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PART  A – GRAPH THEORY – 25 MARKS 

1. River Crossing (8 marks) 
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2. Euler and Hamiltonian Circuits (6 marks) 
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a) This graph does not have a Euler because at least one of the vertices has odd degree: 

both 3 and 10 have odd degree.  

b) This graph has two Hamiltonian circuits starting at vertex 0: 

• 0A1B2C3G6L10Q9K5J8N7H4D0 

• 0D4H7N8JK9Q10L6G3C2B1A0 

3. Minimum Spanning Tree (5 marks) 

The graph in the left box below has two MSTs shown in the two right boxes 
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4. Isomorphic Graphs (6 marks) 

The two graphs G and H below are isomorphic:   
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From V(G): 0 1 2 3 4 5 6 7 8 9 

To V(H): G A H F B E C I D J 

To V(H): J E I F D A C H B G 



CPS420 MIDTERM SOLUTIONS W2023 

 

 

PART B – SEQUENCES, RECURRENCE RELATIONS – 10 MARKS 

Given the sequence an defined with the recurrence relation: 

a0 = 1 

ak = 3ak-1 + 7k for k  1 

1. Terms of the Sequence (5 marks) 

a1 = 3.1 + 7.1 

a2 = 3(3.1 + 7.1) + 7.2 = 32 + 3.7.1 + 7.2 

a3 = 3(32 + 3.7.1 + 7.2) + 7.3 = 33 + 32.7.1 + 31.7.2 + 30.7.3  

a4 = 3(33 + 32.7.1 + 31.7.2 +30.7.3) + 7.4 = 34 + 33.7.1 + 32.7.2 + 31.7.3 + 30.7.4 

a5 = 3(34 + 33.7.1 + 32.7.2 + 31.7.3 + 30.7.4)+ 7.4 = 35 + 34.7.1 + 33.7.2 + 32.7.3 + 31.7.4+30.7.4 

2. Iteration (5 marks) 

an = 3n + 7∑ 3𝑖(𝑛 − 𝑖)𝑛−1
𝑖=0  

PART C – INDUCTION – 15 MARKS 

Given the sequence bn defined recursively as: 

b0 = 1, b1 = 4 

bk = 2bk-1 – bk-2 for k  2 

 

You will now prove by strong induction that a solution to this sequence is bn = 1+3n. 

1. Problem Statement (2 marks) 

The conjecture being proved is expressed symbolically in the form nD, P(n), where: 

 (1 mark) D = ℕ  

 (1 mark) P(n) is: bn = 1+3n 

2. Base Cases (4 marks) 

• When n=0, 1+3n = 1+3.0 = 1 = b0  

• When n=1, 1+3n = 1+3.1 = 4 = b1 

3. Inductive step setup (3.5 marks) 

 (2 marks) State the assumption in the inductive step and identify the inductive hypothesis. 

Assume that some k1 is such that m{0,…,k} bm = 1+3m ← IH: Inductive Hypothesis 

  (1.5 marks) State what  you will be proving in the inductive step. 

We will prove P(k+1), i.e. bk+1 = 1+3(k+1) = 3k+4 

4. Remainder of Inductive step (5.5 marks).   

Since k1 then k+12 and the recurrence relation applies to k+1: 

bk+1 = 2bk – bk-1 

kk and k-1k and therefore the inductive hypothesis applies to them: 

bk+1 = 2(1+3k) – (1+3(k-1)) = 2+6k-1-3k+3 = 3k+4  By algebra 

QED 

 

 

 


