PART A - GRAPH THEORY - 25 MARKS

2. <u>Euler and Hamiltonian Circuits (6 marks)</u>

- a) This graph does not have a **Euler** because at least one of the vertices has odd degree: both 3 and 10 have odd degree.
- b) This graph has two **Hamiltonian** circuits starting at vertex 0:
 - 0A1B2C3G6L10Q9K5J8N7H4D0
 - 0D4H7N8JK9Q10L6G3C2B1A0
- 3. <u>Minimum Spanning Tree (5 marks)</u>

The graph in the left box below has two MSTs shown in the two right boxes

4. <u>Isomorphic Graphs (6 marks)</u>

The two graphs G and H below are isomorphic:

From V(G):	0	1	2	3	4	5	6	7	8	9
To V(H):	G	А	Η	F	В	Е	С	Ι	D	J
To V(H):	J	Е	Ι	F	D	А	С	Н	В	G

PART B – SEQUENCES, RECURRENCE RELATIONS – 10 MARKS

Given the sequence a_n defined with the recurrence relation:

 $\begin{aligned} a_0 &= 1 \\ a_k &= 3a_{k\text{-}1} + 7k \text{ for } k \geq 1 \end{aligned}$

1. <u>Terms of the Sequence (5 marks)</u>

 $\begin{array}{l} a_1 = 3.1 + 7.1 \\ a_2 = 3(3.1 + 7.1) + 7.2 = 3^2 + 3.7.1 + 7.2 \\ a_3 = 3(3^2 + 3.7.1 + 7.2) + 7.3 = 3^3 + 3^2.7.1 + 3^1.7.2 + 3^0.7.3 \\ a_4 = 3(3^3 + 3^2.7.1 + 3^1.7.2 + 3^0.7.3) + 7.4 = 3^4 + 3^3.7.1 + 3^2.7.2 + 3^1.7.3 + 3^0.7.4 \\ a_5 = 3(3^4 + 3^3.7.1 + 3^2.7.2 + 3^1.7.3 + 3^0.7.4) + 7.4 = 3^5 + 3^4.7.1 + 3^3.7.2 + 3^2.7.3 + 3^1.7.4 + 3^0.7.4 \\ \end{array}$

2. Iteration (5 marks)

 $a_n = 3^n + 7 \sum_{i=0}^{n-1} 3^i (n-i)$

PART C - INDUCTION - 15 MARKS

Given the sequence b_n defined recursively as:

$$\begin{split} b_0 &= 1, \, b_1 = 4 \\ b_k &= 2 b_{k\text{-}1} - b_{k\text{-}2} \text{ for } k \geq 2 \end{split}$$

You will now prove by **strong induction** that a solution to this sequence is $b_n = 1+3n$.

1. Problem Statement (2 marks)

The conjecture being proved is expressed symbolically in the form $\forall n \in D$, P(n), where:

- a) (1 mark) $D = \mathbb{N}$
- b) (1 mark) P(n) is: $b_n = 1+3n$
- 2. Base Cases (4 marks)
 - When n=0, $1+3n = 1+3.0 = 1 = b_0$
 - When n=1, $1+3n = 1+3.1 = 4 = b_1$
- 3. Inductive step setup (3.5 marks)

c) (2 marks) State the assumption in the inductive step and identify the inductive hypothesis. Assume that some $k \ge 1$ is such that $\forall m \in \{0,...,k\}$ $b_m = 1+3m \leftarrow IH$: Inductive Hypothesis d) (1.5 marks) State what you will be proving in the inductive step. We will prove P(k+1), i.e. $b_{k+1} = 1+3(k+1) = 3k+4$

4. <u>Remainder of Inductive step (5.5 marks).</u>

Since $k \ge 1$ then $k+1 \ge 2$ and the recurrence relation applies to k+1: $b_{k+1} = 2b_k - b_{k-1}$ $k \le k$ and $k-1 \le k$ and therefore the inductive hypothesis applies to them: $b_{k+1} = 2(1+3k) - (1+3(k-1)) = 2+6k-1-3k+3 = 3k+4$ By algebra QED